82 research outputs found

    Evolution and Impact of High Content Imaging

    Get PDF
    Abstract/outline: The field of high content imaging has steadily evolved and expanded substantially across many industry and academic research institutions since it was first described in the early 1990′s. High content imaging refers to the automated acquisition and analysis of microscopic images from a variety of biological sample types. Integration of high content imaging microscopes with multiwell plate handling robotics enables high content imaging to be performed at scale and support medium- to high-throughput screening of pharmacological, genetic and diverse environmental perturbations upon complex biological systems ranging from 2D cell cultures to 3D tissue organoids to small model organisms. In this perspective article the authors provide a collective view on the following key discussion points relevant to the evolution of high content imaging:• Evolution and impact of high content imaging: An academic perspective• Evolution and impact of high content imaging: An industry perspective• Evolution of high content image analysis• Evolution of high content data analysis pipelines towards multiparametric and phenotypic profiling applications• The role of data integration and multiomics• The role and evolution of image data repositories and sharing standards• Future perspective of high content imaging hardware and softwar

    A Machine Learning Classifier Trained on Cancer Transcriptomes Detects NF1 Inactivation Signal in Glioblastoma

    Get PDF
    We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM)

    Elaboration and properties of plasticised chitosan-based exfoliated nano-biocomposites

    Get PDF
    A series of plasticised chitosan-based materials and nanocomposites were successfully prepared by thermomechanical kneading. During the processing, the montmorillonite (MMT) platelets were fully delaminated. The nanoclay type and content and the preparation method were seen to have an impact on the crystallinity, morphology, glass transition temperature, and mechanical properties of the samples. When higher content (5%) of MMT–Na+ or either content (2.5% or 5%) of chitosan-organomodified MMT (OMMT–Ch) was used, increases in crystallinity and glass transition temperature were observed. Compared to the neat chitosan, the plasticised chitosan-based nano-biocomposites showed drastically improved mechanical properties, which can be ascribed to the excellent dispersion and exfoliation of nanoclay and the strong affinity between the nanoclay and the chitosan matrix. The best mechanical properties obtained were Young's modulus of 164.3 MPa, tensile strength of 13.9 MPa, elongation at break of 62.1%, and energy at break of 0.671 MPa. While the degree of biodegradation was obviously increased by the presence of glycerol, a further increase might be observed especially by the addition of unmodified nanoclay. This could surprisingly contribute to full (100%) biodegradation after 160 days despite the well-known antimicrobial property of chitosan. The results in this study demonstrate the great potential of plasticised chitosan-based nano-biocomposites in applications such as e.g., biodegradable packaging materials
    corecore